Improved upper bounds for the k-tuple domination number

نویسنده

  • Andrei V. Gagarin
چکیده

We improve the generalized upper bound for the k-tuple domination number given in [A. Gagarin and V.E. Zverovich, A generalized upper bound for the k-tuple domination number, Discrete Math. 308 no. 5–6 (2008), 880–885]. Precisely, we show that for any graph G, when k = 3, or k = 4 and d ≤ 3.2, γ×k(G) ≤ ln(δ−k + 2) + ln ( (k − 2)d + ∑k−2 m=2 (k−m) 4min{m, k−2−m} d̂m + d̂k−1 ) + 1 δ − k + 2 n, and, when k = 4 and d > 3.2, or k ≥ 5, γ×k(G) ≤ ln(δ − k + 2) + ln (∑k−2 m=0 (k−m) 4min{m, k−2−m} d̂m + d̂k−1 ) + 1 δ − k + 2 n, where γ×k(G) is the k-tuple domination number, δ is the minimum degree, d is the average degree, and d̂m is the m-degree of G. Moreover, when k ≥ 5, the latter bound can be improved to γ×k(G) ≤ ln(δ − k + 2) + ln (∑k−2 m=0 (k−m) P(k−2,m) d̂m + d̂k−1 ) + 1 δ − k + 2 n, where the coefficient P(t,m) = t t mm(t−m)t−m for t > m > 0, P(t, 0) = P(t, t) = 1, with t = k − 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

k-TUPLE DOMATIC IN GRAPHS

For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...

متن کامل

Roman k-Tuple Domination in Graphs

For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$‎, ‎we define a‎ ‎function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating‎ ‎function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least‎ ‎$k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$‎. ‎The minimum weight of a Roman $k$-tuple dominatin...

متن کامل

Randomized algorithms and upper bounds for multiple domination in graphs and networks

We consider four different types of multiple domination and provide new improved upper bounds for the kand k-tuple domination numbers. They generalise two classical bounds for the domination number and are better than a number of known upper bounds for these two multiple domination parameters. Also, we explicitly present and systematize randomized algorithms for finding multiple dominating sets...

متن کامل

The k-tuple domination number revisited

The following fundamental result for the domination number γ(G) of a graph G was proved by Alon and Spencer, Arnautov, Lovász and Payan: γ(G) ≤ ln(δ + 1) + 1 δ + 1 n, where n is the order and δ is the minimum degree of vertices of G. A similar upper bound for the double domination number was found by Harant and Henning [On double domination in graphs. Discuss. Math. Graph Theory 25 (2005) 29–34...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2008